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Abstract

We carry out an experimentalanalysisof a numberof shortestpath (rout-
ing) algorithmsinvestigatedn the context of the TRANSIMS (TRansportation
ANalysis and SIMulation System)project. The main focus of the paperis to
study how variousheuristicand exact solutions,associatedlatastructuresaf-
fectedthe computationaperformanceof the software developedespeciallyfor
realistictransportatiometworks. For this purposene have usedDallasFt-Worth
roadnetwork with very high degreeof resolution.Thefollowing generakresults
areobtained.

1. We discussandexperimentallyanalyzevariousone-oneshortespathalgo-
rithms. Theseincludeclassicalexactalgorithmsstudiedin the literatureas
well asheuristicsolutionsthataredesignedo take into accounthegeomet-
ric structureof theinputinstances.

2. We describea numberof extensionsto the basicshortestpath algorithm.
Theseextensionswere primarily motivatedby practical problemsarising
in TRANSIMS andITS (Intelligent TransportatiorSystemsyelatedtech-
nologies.Extensiongliscussednclude— (i) Time dependenhetworks, (ii)
multi-modalnetworks, (iii) networkswith public transportatiorandassoci-
atedschedules.

Computationatesultsare providedto empirically comparethe efficiengy of
variousalgorithms. Our studiesindicatethata modified Dijkstra’s algorithmis
computationallyfastandan excellentcandidatdor usein varioustransportation
planningapplicationsaswell asITS relatedtechnologies.

Keywords: ExperimentalAnalysis, TransportatiorPlanning, Algorithms, Network Design,
ShortesPathsAlgorithms.
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1 Intr oduction

TRANSIMS is a multi-year projectat the Los Alamos National Laboratoryandis fundedby the
Departmenbf Transportatiorand by the EnvironmentalProtectionAgeng. The main purposeof
TRANSIMS is to develop nev methodsfor studyingtransportatiorplanningquestions.A typical
exampleof a questionthat canbe studiedin this context would be to studythe economicandsocial
impactof building a new freewvay in alarge metropolitanarea.We referthereaderto [TR+954 and
the web-siteht t p: / / wwwt ransi ns. t sasa. | anl . gov/ resear ch.t eant paper s/ for
moredetailsaboutthe TRANSIMS project.

The maingoal of the paperis to describethe computationakxperiencesn engineeringzarious
pathfinding algorithmsspecificallyin the context of TRANSIMS. Most of the algorithmsdiscussed
herearenot new; they have beendiscussedn the Operation®Researcland ComputerSciencecom-
munity. Although extensve researcthasbeendoneon theoreticaland experimentalevaluationof
shortespathalgorithms mostof theempiricalresearcthasfocusednrandomlygeneratedetworks,
speciaklasse®f networkssuchasgrids. In contrastnotmuchwork hasbeendoneto studythecom-
putationalbehaior of shortespathandrelatedrouting algorithmson realistictraffic networks. The
realisticnetworks differ with randomnetworks aswell ashomogeneouéstructurechetworks)in the
following significantways:

(i) Realisticnetworkstypically have averylow averagedegree.In factin our casetheaveragedegree
of the network wasaround2.6. Similar numbershave beenreportedin [ZN98]. In contrastandom

networksusedin [Pa84 have in somecasesveragedegreeof upto 10.
(i) Realisticnetworks are not very uniform. In fact, onetypically seesone or two large clusters

(downtowvn andneighboringareas)yandthensmall clustersspreadout throughoutthe entire areaof
interest.
(iif) For mostempiricalstudieswith randomnetworks, the edgeweightsare chosernindependently

anduniformly at randomfrom a givenintenal. In contrastrealisticnetworks typically have short
links.

With the abore reasonandspecificapplicationin mind, the mainfocusof this paperis to carry
out experimentaknalysisof a numberof shortespathalgorithmson realtransportatiometwork and
subjectto practicalconstraintsmposedby the overall system.

Therestof thereportis organizedasfollows. Section5 describe®ur experimentalsetup. Sec-
tion 6 describeshe experimentakesultsobtained.Finally, in Section8 we give concludingremarks
anddirectionsfor future research We have alsoincludedan Appendix(Section8.1) thatdescribes
therelevantalgorithmsfor finding shortespathsin detail.

2 Problemspecificationand justification

The problemsdiscusse@bove canbe formally describedasfollows: let G(V, E) bea (un)directed
graph. Eachedgee € E hasoneattribute — w(e). w(e) denoteghe weightof the edge(or cost)
e. Here,we assumehatthe weightsarenon-ngative floating point numbers.Most of our positve
resultscanin factbe extendedo handlenggative edgeweightsalso(if thereareno negative cycles).

Definition 2.1 One-OneShortestPath:
Givena directedweightedgraph G, a source destinationpair (s, d) find a shortest(with respecto
w) pathp in G froms tod.



Notethatour experimentsarecarriedout for shortespathbetweenra pair of nodesasagainsto
finding shortespathtrees.Much of theliteratureon experimentabnalysisusesthelattermeasureo
gaugetheefficiengy. Our choicefor the measuras motivatedby thefollowing obserations:

1. Wewantedtherouteplanerto work for roughlyamillion travelers.In highly detailednetworks,
mostof thesetravelershave differentstartingpoints(for example for Portlandwe have 1.5mil-
lion travelersand 200000 possiblestartinglocations). Thus,for ary given startinglocation,
we couldre-usethe treecomputatioronly for of the orderof tenothertravelers.

2. We wantedour algorithmsto be extensibleto take additionalelementsnto account.For ex-
ample,eachsuchtraveler typically hasa differentstartingtime for his/hertrip. Sincewe use
ouralgorithmsfor time dependentetworks (networksin which edgeweightsvary with time),
the shortespathtreewill bedifferentfor eachtraveler Anotherexamplein this context is to
find pathsfor travelersin network with multiple modechoices.In this contet, we aregiven
adirectedlabeled weighted graphG representin@ transportatiometwork with thelabelson
edgegepresentinghe variousmodalattributes(e.g.alabelt mightrepresentrail line). The
goalis typically to find shortest(simple) pathssubjectto certainlabeling constraintson the
setof feasiblepaths. In generalthe criteriafor pathselectionvary so muchfrom travelerto
travelerthatit becomegloubtful that the additionaloverheadfor the “re-use” of information
will payoff.

3. The TRANSIMS framework allows us to use pathsthat are not necessarilyoptimal. This
motivatesinvestigationinto the possibleuseof heuristicsolutionsfor obtainingnearoptimal
paths(e.g.themodified A* algorithm). For mostof theseheuristicstheideais to biasamore
focusedsearchowardsthedestination-thusnaturallymotivatingthe studyof one-oneshortest
pathalgorithms.

4. Finally, the networks we anticipateto dealwith containmorethan80000 nodesandaround
120000 edges.For suchnetworks storingshortestpathtreesamountg¢o hugememoryover
heads.

3 Choiceof algorithms

Importantobjectives usedto evaluatethe performanceof the algorithmsinclude (i) time taken for

computatioron realnetworks, (i) quality of solutionobtained iii) easeof implementatiorand(iv)

extensibility of the algorithm for solving other variantsof the shortestpath problem. A number
interestingengineeringjuestionsvere encounteredn the process.We experimentallyevaluateda
numberof variantsof basicDijkstra’s algorithm. The basicalgorithmwaschoserdueto the recom-
mendationsnadein Cherkassk Goldbeg andRadzik| CGR96]andZhanandNoon[ZN98]. The
algorithmsstudiedwere:

e Dijkstra’s algorithmwith Binary HeapCGR96],
e A* algorithmproposedn Al literatureandanalyzedy Sedgwvick andVitter [SV86],

e amodificationof the A* algorithmthatwe will describebelow, andalludedto in [SV86)].



We also considered bidirectionalversionof Dijkstra’s algorithm describedn [Ma, LR89]. We
briefly recallthe A* algorithm andthe modificationproposed.Details of thesealgorithmscanbe
found in the Appendix. Whenthe underlyingnetwork is Euclideaniit is possibleto improve the
averagecaseperformancef Dijkstra’s algorithm. Typically, while solvingproblemson suchgraphs,
theinherentgeometridnformationis ignoredby theclassicapathfinding algorithms.Thebasicidea
of improving the performanceof Dijkstra’s algorithmis from Sedgwick andVitter [SV86] andis
originally attributedto Hart Nilssonand Raphel[HNR68] canbe describedasfollows. To build a
shortestpathfrom s to ¢, we usethe original distanceestimatefor the fringe vertex suchasz, i.e.
from s to z (asbefore)plusthe Euclideardistanceérom z to . Thuswe useglobalinformationabout
the graphto guide our searchfor shortestpathfrom s to ¢. The resultingalgorithmtypically runs
muchfasterthanDijkstra’s algorithmon typical graphsfor the following intuitive reasons:(i) The
shortespathtreegrowsin thedirectionof ¢ and(ii) Thesearclof theshortespathcanbeterminated
assoonast is addedo theshortespathtree.

We cannow modify this algorithmby giving anappropriateveightto to the distancefrom z to
t. By choosingan appropriatenultiplicative factor we canincreasehe contrikution of the second
componentn calculatingthelabelof avertex<. Fromaintuitive standpointhis correspond$o giving
thedestinatiorahigh potential in effectbiasingthesearcttowardsthedestination Thismodification
will in generainot yield shortesipaths,nevertheles®ur experimentakesultssuggesthatthe errors
producedaretypically quite small.

4 Summary of Results

We arenow readyto summarizethe main resultsand conclusionsof this paper As alreadystated
themainfocusof the paperis towardsengineeringvell knovn shortespathalgorithmsin a practical
setting.Anothergoal of this paperis alsoto provide reasongor andagainsicertainimplementations
from a practicalstandpoint We believe thatour conclusionsalongwith the earlierresultsin [ZN98,
CGR96]provide practitionersanusefulbasisto selectappropriatelgorithms/implementatianin the
contet of transportatiometworks. The generalresults/conclusionef this paperare summarized
below.

1. We concludethat the simple Binary heapimplementatiorof Dijkstra’s algorithmis a good
choicefor finding optimalroutesin real roadtransportatiometworks. Specifically we found
thata certaintypesof data-structuréine tuningdid not significantlyimprove the performance
of ourimplementation.

2. Our resultssuggesthat heuristicsolutionsthat aim at using the geometricstructureof the
graphsare attractve candidatedor future research.Our experimentalresultsmotivatedthe
formulationandimplementatiorof an extremelyfastheuristicextensionof the basicA* algo-
rithm thatseemso yield nearoptimalsolutions.

3. Wehave extendedhisalgorithmin two orthogonahndimportantdirectionsy(i) timedependent
networks and (i) multi-modal networks. Theseextensionsare significantfrom a practical
standpoinsincethey arethemostrealisticrepresentationsf theunderlyingphysicalnetwork.
We performsuitabletestgto calculateheslow down experience@saresultof theseaxtensions.

4. Ourstudysuggestshatbidirectionalvariationof Dijkstra’s algorithmis not suitablefor trans-
portationplanning.Ourconclusionarebasedntwo factors:(i) thealgorithmis notextensible
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to moregenerapathproblemsand(ii) therunningtime of thealgorithmis morethanA* algo-
rithm.

5 Experimental Setupand Methodology

In this sectionwe describethe computationakesultsof our implementations.In orderto anchor
researchn realisticproblems, TRANSIMS usesexamplecasesalledCasestudies(See[CS97]for
completedetails). Thisallows usto testthe effectivenesof ouralgorithmsonreallife data.Thecase
studyjust concludedwvasfocusedon Dallas Fort-Worth (DFW) Metropolitanareaandwasdonein
conjunctionwith Municipal PlanningOrganization(MPO) (known asNorth CentralTexas Council
of Gavernment{NCTCOG)).We generatedrips for thewhole DFW areafor a 24 hourperiod. The
input for eachtraveler hasthe following format: (startingtime, startinglocation,endinglocation)?
Thereare10.3million Trips over 24 hours. The numberof nodesandlinks in the Dallasnetwork is
roughly 9863,14750respeciiely. The averagedegreeof a nodein the network was2.5. We route
all thesetrips throughthe so-calledfocusednetwork. It hasall freewvay links, mostmajor arterials,
etc. Insidethis network, thereis an areawhereall streetsjncludinglocal streetsare containedn
the database. This is the studyarea. We initially routedall trips betweensamand10am,but only
thetripswhich did gothroughthe studyareawereretainedyesultingin approx.300000trips. These
300000tripswerere-plannedverandover againin iterationwith themicro-simulation(s)For more
details,seege.g.,[NB97, CS97].A 3%randomsampleof thesetrips wereusedfor ourcomputational
experimentsFinally, thenumberof Links of eachclassis asfollows:

Class Type Number | Number
(Oct 96) | Feb 97

0 Centroid 2964 1422

1 Freeway 1962 1984

2 Principle Art. 2056 1251

3 Minor Art. 5079 2843

4 Collector 3830 2196

5 Local Street 144 1986

6 Freeway Ramp 2704 2124

7 Frontage Road 1037 944

Table 1: Summaryof individual link typesin DallasFt Worth Area. Thethird columnsummarizes
thenumberdor the network usedin Octoberl996study Thenumbersn thefourth column
summarizehe numberdor the Februaryl997network. As onecanseethe biggestchangdn the
numberds in thelocal streets The new network usedhasthesestreetencodedandthusis usedby
the plannerto routeplans.

Preparing the network. Thedatarecevedfrom DFW metrohada numberof inadequacieom the
pointof view of performingthe experimentaknalysis. Thesehadto becorrectedbeforecarryingout
theanalysis We mentionafew importantoneshere.First,thenetwork wasfoundto have anumbetrof
disconnecteg¢omponentgsmallislands).We did not consider(o, d) pairsin differentcomponents.
Seconda more seriousproblemfrom an algorithmic standpointwasthe fact that for a numberof
links, thelengthwaslessthantheactualEuclideandistancebetweerthethe two endpoints.In most

2Thisis roughly correct therealityis morecomplicated[NB97, CS97.



casesthis wasdueto an artificial corventionusedby the DFW transportatiorplanners(so-called
centroidconnectoraiwayshave length10 m, whatever the Euclideandistance)put in somecasest

pointedto dataerrors. In ary case this discrepang disallavs effective implementatiorof A* type
algorithms.For thisreasonwe introducethe notion of the “normalized”network: For all “too short”
links we setthereportedengthto be equalto the Euclidearndistance.

We also carriedout preliminary experimentalanalysisfor the following network modifications
that could be helpful in improving the efficiency of our algorithms. Theseinclude: (i) Remaing
nodeswith dggreedessthan3: (Includescollapsingpathsandalsoleaf nodes)ii) Modifying nodes
of deggree3: (Replacdt by atriangle)

Hardware and Software Support. Theexperimentavereperformedona SunUItraSparcCPUwith
250 Mhz, runningunderSolaris2.5. 2 gigabytemain memorywere sharedwith 13 other CPUs;
our own memoryusagewasalways 150 MB or less. In generalwe usedthe SUN WorkshopCC
compilerwith optimizationflag -fast. (We alsoperformedanexperimenton theinfluenceof different
optimizationoptionswithout seeingsignificantdifferences.) The adwvantageof the multiprocessor
machinewas reproducibility of the results,asthe operatingsystemhasno needto interruptsince
requestdy otherprocesseweredelggatedto otherCPUs.

Experimental Method We usedthe network describedup front. We picked 10,000arbitraryplans
from the casestudy We usedthetiming mechanisnprovidedby theoperatingsystemwith granular
ity .01secondgl tick). We performedexperimentonly if thesystemoaddid notexceedthenumber
of availableprocessorg,e. processorslo not getshared.As long asthis conditionwasnot violated
duringthe experimenttherunningtimeswerefairly consistentusuallywithin relative errorsof 3%.

We used(a subset)f the following valuesmeasurabléor a singleor a specificnumberof com-
putationto concludethereportedresults

(average)yunningtime excludingi/o

numberof nodedringe/expanded

picturesof fringe/expandechodes

maximumheapsize
e numberandlengthof the path

Software DesignWe areusingthe objectorientedfeaturesaswell asthe templatingmechanisnof
C++ to easilycombinedifferentimplementationsWe alsousepreprocessodirectvesandmacros.
We do not usevirtual methodgevensoit is temptingto createa purelyvirtual “network” baseclass)
to avoid unnecessarfunctioncalls (by this enablenlining of functions).
Thereareclassencapsulatinghe following elementof the computation:

e network (extensibility anddifferentlevelsof detailleadto small,linearhierarchy)
e plans:(o,d) pairsandreal paths startingtime

e heap

¢ labelingof thegraphandusingthe heap

e storingtheshortespathtree

e Dijkstra’s algorithm

As to be expectedthis approacHeadsto aformal overheadf functioncalls. As it turnsout, the
compileroptimizationcantake careof thisfairly well. (Thereis afactorof 2-3 differencein running
time betweerdeluggingflag andfull optimization.)
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6 Experimental Results

Designlssuesabout Data Structur esWe begin with the designdecisiongegardingthe datastruc-
turesused.

A numberof alternatve datastructureswere consideredn the hope of investigatingif these
improvementgesultsin substantiaimprovementin the runningtime of the algorithm. The alterna-
tivestestedincludedthefollowing. (i) ArraysversusHeaps, (i) DeferredUpdate (iii) HashTables
for Storing Graphs,(iv) SmartLabel Reset(v) Heapvariations,and (vi) structof arraysvs. array
of structs. Appendix containsa more detaileddiscussiornof theseissues. We found, that indeed
good programmingpractice,usingcommonsenseo avoid unnecessargomputationand textbook
knowledgeon reasonabl@atastructuresare usefulto getgoodrunningtimes. For the alternaties
mentionedabove, we did not find substantialmprovementin the runningtime. More precisely the
differencesvefoundwerebiggerthanthe unavoidablenoiseonamulti-usercomputingervironment.
Neverthelessthey wereall belov 10%relative difference.Thus,we do not discusgheseresultsin
furtherdetail.

Analysis of results. Theplain Dijkstra, usingstaticdelayscalculatedrom reportedreeflow speeds,
producedoughly100planspersecondFigurel illustratestheimprovementby the obatinedoy A*.
Thenumbersshavn in the cornerof the network snapshotsell anaverage(100repetitionsyunning
time for this particularO-D-pair;, (destrging hasheffectsbetweersubsequentuns)in systemticks.
It alsogivesthenumberf nodessxpandedandfringe nodes Notethechangedcaleof thedepictions
dueto thedifferentnodessxpanded Overallwefoundthat A* is fasterthanbasicDijkstra’s algorithm
by roughlya factorof 2. Also, recallthatfor the original network Sedgwick andVitter's heuristic
wasnot applicable:it turnedout thatthereexist somelinks thathave reportedengthmuchsmaller
(factor 100) than the Euclideandistanceof the endpoints. To be ableto conductary reasonable
experiment,we modified (“normalized”) the network asreportedabore: If necessaryhe reported
lengthwaschangedo Euclideardistancefo ensurehecorrectinequality

Modified A* (Overdo Heuristic) Next considethemodified A* algorithm— the heuristicis param-
eterizedby the multiplicative factor usedto weigh the Euclideandistanceestimateto the desitna-
tion. We call it the overdo parametedueto obviousreasonsAs a resultit is naturalto discusghe
time/qualitytrade-of of theheuristicasa functionof theoverdo parameterFigure2 summarizeshe
performanceln thefigurethe X-axisrepresenttheoverdofactor beingvariedfrom 0 to 100in steps
of 1. TheY-axisis usedfor multiple attributeswhich we explain below. First, it is usedto represent
the averagerunningtime per plan. For this attribute, the scaleis .02 secondger unit. As depicted
by thesolid line theaveragetime takenwithout ary overdoatall is 12.9microsecondperplan. This
representshe basemeasuremer{wvithout takingthe geometridnformationinto account).Next, for
overdovalueof 10 and99 the runningtimesarerespectiely 2.53and.308 microsecondsOn the
otehrhand,the quality of the solutionproducedby the heuristicdetioratesasthe overdofactoris
increasedWe usedtwo quantitieso measurehe error— the maximumrelatie errorincurredover
10000plansandthe moreinterestinglythe numberof plansworsethana giventhresholderror The
maximumrelative errorrangedrom O for overdofactorO to 16%for overdovalue99. For the other
errormeasurewe plot onecune for eachthresholderror of 0%, 1%, 2%, 5%, 10%. Thefollowing
conclusionganbedravn from our results.

1. The runningtimesimprove significantly asthe overdo factoris increased. Specificallythe
improvementsareafactor5 for overdoparametefl0 andalmostafactor40 for overdoparam-
eter99.



ticks 0.64, #exp 1446, #fr 316

Figure 1: Figureillustrating the numberof expandedhodeswhile running (i) Dijkstra (i) A* algo-
rithms. As the figuresclearly shav the A* heuristicclearly is muchmoreefficientin termsof the
nodesit visits. In boththe graphs,the pathis outlinedasa dark line. The fringe nodesandthe
expandechodesaremarkedasdarkspots.Theunderlyingnetwork is shavn in light grey.
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Figure2: Influenceof the“Overdo”-Farameteon runningtime andquality of paths

2. In contrast,the quality of solutionworsensmuch more slowly. Specifically the maximum
erroris no worsethan 16% for the maximumoverdofactor Moreover, althoughthe number
of erroneougplansis quite high (almostall plansareerroneougor overdofactorof 99), most
of themhave smallrelative errors. To illustratethis, notethatonly around15% of themhave
relative errorof 5% or more.

3. The experimentsand the graphssuggestan “optimal” value of overdo factorfor which the
runningtime is significantly improved while the solution quality is not too bad. Thusour
experimentsarea stepin trying to find anempiricaltime/performanceérade-of asa function
of theoverdoparameter

4. Wealsofoundthatthenearoptimal pathsproducedverevisually acceptablandrepresented
feasiblealternatve routeguidingmechanismThis methodfindsalternatve pathsthatarequite
differentthanonesfoundby the k-shortespathalgorithmsandseemmorenatural.Intuitively,
the k-shortespathalgorithms find pathsvery similar to the overall shortespath,exceptfor a
few local changes.

7 Discussionof Results

First, we notethat the runningtimesfor the plain Dijkstra are reasonables well as suficient in
the contex of the TRANSIMS project. Quantitatvely, this meanghefollowing: TRANSIMS s run
in iterationsbetweenthe micro-simulation,andthe plannermodules,of which the route planneris
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ticks 0.10, #exp 140, #fr 190
Figure 3: for illustration only: two instanceof Dijkstrasalgorithmswith a very high overdo pa-
rameterstartat origin anddestinatiorrespectiely. Oneof themreally createghe shawn path,the
beginningof the otherpathis visible asa“cloud” of expandechodes

onepart. The Portlandnetwork we are intendingto usehasabout120000 links and about80000
nodes. Simulating24 hoursof traffic on this network will take about24 hourscomputingtime on
our 14 CPU machine.Therewill be aboutl1.5 million trips on this network. Routingall thesetrips
shouldtake 1.5 - 10° trips - 0.5 sec/trip ~ 9 dayson a single CPU andthuslessthan1 day on our
14 CPU machine. Sincere-routingtypically concernsonly 10% of the population,we would need
lessthan3 hoursof computingtime for there-routingpartof oneiteration,still significantlylessthan
themicro-simulatiomeeds.

Ourresultsandthe necessargontstraintgplacedby the functionality requiremenof the overall
systemimply thatbidirectionalversionof Dijkstra’s algorithmis notaviablealternatve. Two reasons
for thisare: (i) Thealgorithmcannotbe extendedn adirectway to pathproblemsn a multi-modal
andtime dependentetworks,and(ii) therunningtimesof A* is betterthanthebidirectionalvariant;
themodified A* is muchmorefaster

We have recentlybegunresearchor the next casestudyprojectfor TRANSIMS. This casestudy
is going to be donein Portland,Oregon andwas chosento demonstratehe validateour ideasfor
multi-modaltime dependenhetworks with public transportatiorfollowing a schedulednovement.
Our initial study suggestghatwe now take .5 seconder plan asopposedo .01 secondsn the
DallasFt-Worth case.All theseextensionsareimportantfrom the standpoinof finding algorithms
for realistictransportatiomoutingproblems We commenbnthisin somedetailbelov. Multi-modal
networks areanintegral partof mostMPQ's. Finding optimal (or nearoptimal) routesin this envi-
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ronmentthereforeconstitutesa realproblem.In the past,solutionsfor routingin suchnetworkswas
handledin anadhocfashion.In [BIM9§], we have proposednodelsandcorrespondinglgorithms
to solve suchproblems.

Next consideranotherimportantextension— namelyto time dependenhetworks. In this case
the edgelengthis assumedo be a function of time. We malke animportantmodelingassumption,
namelyit doesnot paya persorto wait. Thisneednotbetruein generabut is adequatéor mostpur
poses.Thisimpliesthatthe edgelengthfunctionis monotonicallynon-increasingTime dependent
networks canalsobe usedto modelspublic transportatiorsystemswith fixed schedulesBy using
an appropriateextensionof the basicDijkstra’s algorithm, one cancalculateoptimal pathsin such
networks.

8 Conclusions

The computationatesultspresentedn the previous sectionsdemonstrateéhat Dijkstra’s algorithm
for finding shortespathsis aviable candidatéor computerouteplansin arouteplanningstageof a
TRANSIMS like system.In fact,even moreinterestingly the resultsdemonstrat¢éhatthe algorithm
thathasoptimizedwell comparesvell (or evensometimedbetter)thanseveralheuristicgoroposedn
theliterature. Thussuchan algorithmshouldbe consideredvenfor ITS type projectsin which we
needto find routesby anon-boardvehiclenavigationsystems.

In thecontet of the TRANSIMS project,we arefacedwith the problemof routingmary millions
of tripsin iterationwith a micro-simulation Mosttrips have entirelydifferentcharacteristicssuchas
differentstartinglocations differentstartingtimes, anddifferent preferencesowardsmodechoice.
This leadsto the consideratiorof one-to-oneshortespathalgorithms,asopposedo algorithmsthat
constructthe completeshortest-pathree from a given starting (or destination)point. As is well
known, the worst-casecompleity of one-to-oneshortestipathalgorithmsis the sameasof one-to-
all shortestpathalgorithms. Yet, in termsof our practicalproblem,this is not applicable. First, a
one-to-onealgorithmcanstopassoonasthe destinatioris reachedsaring computettime especially
whentrips areshort(which oftenis the casein our setting). Secondsinceour networksareroughly
Euclideanpnecanusethis factfor heuristicshatreducecomputatiortime evenmore.Oneheuristic,
theSedgw®vick-Vitter or A* algorithm,generatesesultsthatareprovably optimal,but is aheuristicin
the sensehattheworst-caseompleity doesnot getary betteralthoughpracticalcomputingtimes
decreaseOnecanextendthe approactof Sedgevick-Vitter or A* towardsa “true” heuristicwhere
routesare no longer optimal but computationtime goesdowvn even more. The abore approaches
were evaluatedin the contet of the TRANSIMS Dallas-Fort Worth casestudy The underlying
road network was a so-calledfocussedhetwork, with all streetsincluding the local onesin a five
times five miles study area,and more and more streetsleft out when going away from the study
area. For that case,SV/A* turnsout to be abouta factor of two fasterthan regular Dijkstra; the
secondheuristiccould sare, for example,anotherfactorof 5 while generatingesultswithin 1% of
the optimalsolution.

Making the algorithmstime-dependenin all casessloved down the computationby not more
thanafactorof two. Sincewe areusinga one-to-oneapproachaddingextensionghatfor example
include personabpreferencege.g.modechoice)are straightforvard; preliminarytestslet us expect
slow-downs of not morethana factor30. This apperentlymainly inducedby an quadrupeledet-
work (splitting links andaddingbustopology),complicatedime dependencfunctionsrepresenting
scheduledussesandpresumablynostimportby thedifferenttypeof delaysinducingaqualtitatively
differentexploration of the network by the algorithm. Extrapolationsof the resultsfor a Portland
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problem(the next TRANSIMS casestudy)shav that, even whentime-dependerandwith the ex-
tensionstherouteplanningpartof TRANSIMS still usessignificantlylesscomputingtime thanthe
micro-simulation.

Last, we wantto mentionthat undercertaincircumstanceshe one-on-oneapproachchosenn
this papermay alsobe usefulfor ITS applications.This would be the casewhencustomersvhould

requirecustomizedoute suggestionsso that re-usinga shortestpathtreefrom anothercalculation
mayno longerbepossible.
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Appendix: Description of BasicAlgorithms

In this section,we describethe basicalgorithmsconsideredn this paper Most of theresultsin this
sectionarenotnew; we recallthemherefor completenesandfor descriptiorof experimentalesults.

8.1 Dijkstra’ s Algorithm

Dijkstra’s algorithmsolvesthesinglesourceshortespathproblemon a weighted(un)directedgraph
G(V, E), whenall theedgeweightsarenonn@ative. Let w(u, v) denoteheweightof anedgein the
network.

Supposeave wish to find a shortestpathfrom s to ¢. Dijkstra’s algorithmmaintainsa setS of
verticeswhosefinal shortestpathsfrom the sources have beenalreadycomputed. The algorithm
repeatedlyfindsavertex in thesetu € V' — S which hasthe minimumshortespathestimateaddsu
to S andupdatesgheshortespathestimate®f all theneighborsof « thatarenotin S. Thealgorithm
continueauntil theterminalvertex is addedto S. In generaljt is corvenientto think of the vertices
in the graphbeingdivided into threeclassesluringthe executionof the algorithm: (i) shortestpath
tree vertices— (thosewhich have beenaddedto S and hencetheir shortestpath hasalreadybeen
determined(ii) unseervertices- thosefor which the distanceestimates oo and(iii) fringe vertices
— thosethat are adjacento the verticesin .S but have themseles not beenaddedto S. Now each
iterationof the algorithmconsistsof addinga fringe vertex with minimum distanceto the shortest
pathtreeandupdatingits neighborgo befringe vertices.Usingthis terminology initially, only s is
ashortespathtreevertex, neighborof s arefringe vertices,andothersareunseervertices.

DIJKSTRA’S ALGORITHM outlinesthe stepsof the algorithm. In the remainderof the section,
we will used(u) to denotethe costof a shortespathfrom s to w. We will alsoassumehat|V| = n
and|E| = m. Also, for a givenvertex v let N(v) denotethe setof neighborsof v i.e. N(v) =
{w| (v,w) € E}. Finally, by thephrasesxtracta vertex from V- we meanchoosea vertex anddelete
it fromV.

DIJKSTRA’S ALGORITHM:

e Input: G(V, E) - anetwork, asources anda destinationvertex d andanon-ngative weight
functionl/ : E — ZT.

e 1. Initialization: SetS = ¢, d(s) = 0 andVv € V — {s},d(v) = oo. Found = 0.
2. lterative Step:while Found =0do

(a) Extract Minimum Step: Amongall verticesv € V — S extracta vertex v with
minimumvalueof d(v). SetS = S U {v}. If v = d thensetFound = 1.

(b) Decrease(Update)Key: For eachedge(v, w), suchthatw € N(v), setd(w) =
min{d(w), d(v) + w(v,w)}.

e Output: A shortespathfrom s tod, i.e. apathp =< v, ... vy > Wherevy = s andvy, = d
andtheweightw(p) Y¢=% w(v; 1, v;) istheminimumover all pathsfrom s to d
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8.2 Bidir ectional Dijkstra’ s Algorithm

The bidirectionalalgorithmhasbeenusedin the operationgesearcrcommunityand analyzedoy

theoreticalcomputerscientistsproviding quantitatve reasondor its improved performance.(See
[LR89, Ma] for moredetails.) Thebidirectionalsearchalgorithmconsistof two phasesin thefirst

phasewve alternatebetweertwo unidirectionakearchesoneforwardfrom s, growing atreespanning
a setof nodesS for which the minimum distancefrom s is known, andthe seconathat consistsof

growing a tree spanninga setof nodesD for which the minimum distancefrom d is known. We

alternatelyaddonenodeto S andoneto D until anedgecrossingfrom S to D is dravn. At this

point, the shortespathis known to lie within the searchireesassociatevith .S and D exceptfor one
additionaledgefrom S to D. A geometridnterpretatiorof the algorithm(in which the edgeshave

unit weights)is asfollows:

We startgrowing a ball arounds andt, at eachtime step,the ball grows by 1 unit (in
termsof radius). We stopthe algorithm,whenthe two balls collide; i.e. thereexistsa
vertex thatbecomesa part of boththe balls. The paths ~~ v ~~ t, wherew is the
vertex wheretheballscollide, representthe shortespathfrom s to ¢.

As mentioneckarlier in caseof weightedgraphwe alsoneedto consideroneextra crossfor the
possiblenclusionin theshortespath.

Lemma 8.1 Thefollowing statement$iold:
(1) Theshortestpathfroms to ¢t hasat mostonecrossedg froma vertexin S to a vertexin D.

@Qw(s—k—1t)<2w(s—1t)

Proof Sketch: We denotew(s — k — t) astheweightof the shortespathfrom s to ¢ goingthrough
k. LetP = s ~~ £ — a —y ~~ t denotea shortestpaththat hasmore thanone edge. The
following inequalitiesareimmediatefrom the correctnessf Dijkstra’s algorithmandthefactthat P
isashortespath:w(s — z) + w(z — a) > w(s, k) andw(t —y) + w(y — @) > w(y, k). Thisimplies
w(s —z) + w(rz —a) + w(t —y) + w(y — @) > w(s, k) + w(y, k) whichis acontradiction.
Part 2: Let ussaythatshortespathfrom s to ¢ is of theform s ~~ x — y ~~ t, wherez € S and
y € D. Thefollowing inequalitiesareimmediate:w(s, k) < w(s — z) + w(z — y); w(y, k) <
w(t—y)+w(y—z). Thisimpliesw(s, k) +w(k,y) < w(s—z)+w(z—y)+w(t—y)+w(ly—z) <
2w(s —x —y —t).

In [LR89], the authorsshaw thatif the weightof eachedgein a completedirectedgraphwith
n nhodesis chosenfrom an exponentialdistribution, with high probability the bidirectionalsearch
terminatesafterexamininga substantiallyfewer edgeghanthe unidirectionalsearch.

Theorem 8.2 Leta, b, ¢ be constantsDefinea family of probability distributionsover a n-nodedi-
rectedgraphwith edge weights,onedistribution for for eac n. ead ede (7, j) hasa probability of
(alogn)/b of beingpresent.For thoseedgesthat are chosen the lengthof the edee [ is indepen-
dentlychosenaccoding to a probability distribution whosedensityfunction f. hasa valuebounded
betweerb andc. Theexpectedimeto finda s — ¢ shortesipathusingbidirectionalseach is O(y/n).
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8.3 A Moadification For Euclidean Graphs: A*-Algorithm

Whentheunderlyingnetwork is Euclideanijt is possibleto improve the averagecaseperformancef
Dijkstra’s algorithm. Euclideangraphsaredefinedasfollows. The verticesof the graphcorrespond
to pointsin R? andthe weight of eachedgeis proportionalto the Euclideandistancebetweerthe
two points. Typically, while solving problemson suchgraphstheinherentgeometrianformationis
ignoredby the classicalpathfinding algorithms. The basicideabehindimproving the performance
of Dijkstra’s algorithmis from Sedgwick and Vitter [SV86] and is originally attributed to Hart
Nilssonand Raphel[HNRG68] is simple and can be describedasfollows. To build a shortestpath
from s to ¢, we usethe original distanceestimatefor the fringe vertex suchasz, i.e. from s to
z (asbefore)plus the Euclideandistancefrom z to ¢. Thuswe useglobal informationaboutthe
graphto guideour searchfor shortesipathfrom s to ¢. To formalizethis, defineD(z,y) to bethe
Euclideandistancebetweenz andy anddefinel(z,y) to be the shortestpathfrom z to y in the
graph. The length of the pathasusualis equalto the sum of the edgelengthsthat constitutethe
path:theweightof anedge(z, y) is definedto be D(z,y). Now eachfringe vertex z is assignedhe
following value:min,, {I(s, w) + D(w, z)} + D(z,t) Theresultingalgorithmrunsmuchfasterthan
Dijkstra’s algorithmon typical graphsfor the following reasons{i) The shortespathtreegrowsin
thedirectionof ¢ and(ii) The searchof the shortespathcanbe terminatedassoonast is addedto
the to the shortesipathtree. The correctnessf the algorithmfollows from the factthat D(z, t) is
alower boundoni(z,t). Anotherway to interpretthe algorithmandits correctnesss by usingthe
concepbf vertex potentials— anideafirst usedby Gabaw.

Conceptof Vertex Potentials. Eachvertex is assigneda non-ngative value D(z) — calledits po-
tential Theintuition is thatwhenyou entera vertex v we receve D(v) dollarswhich arededucted
from the pathandwhenwe leave a vertex we addthatamountof money to the path. Usingthese
potentials)et usdefinethelengthof the edgesasfollows

Y(u,v) € E, (u,v) = l(u,v) + D(u) — D(v)
Thepotentialsarecalledadmissibleor feasibleif the new lengthsareall positive. The following
theoremshaws thatthethe shortespathsin the graphwith modifiedweightsremainghe same.

Theorem 8.3 Let D be a setof admissiblevertex potential. Thenthe weightof a pathp =< s =
v1,...0, =t >fromstot is givenby

i=n

’UNJ(p) = Zl(viviﬂ) + D(S) — D(t)
i=1
In otherwords the lengthof eat pathfrom s to ¢ is changed by the sameconstantadditivefactor
Thusif p is a shortests — ¢ pathin the original graphthenit is still the shortestpathin the graph
with modifiededge weights.

Proof: Considera pathp =< s = vy,...v, = t >. Clearlyits weight undermodified weight
functionis



= gl(uium) + D(v;) — D(vit1)

1=n

= Z l(’Ui’UZ'+1) + D(S) - D(t)

=1

w(p) = w(p)+D(s)—D(¢)

8.4 Modified A*

We briefly discusssomeof the heuristicimprovementgo the basicA* algorithmthatcanbe usedin
practice.Again, recallthatin mary practicalsituations(including TRANSIMS), it is not necessary
to find exactshortespaths— approximatelyshortespathssuffice. We tried two heuristicsolutionsin
this context.

(1) The modified A* algorithm. Recallthatthe currentlabel of a vertex consistsof two compo-
nents— its shortestistanceto the sourceand an estimate(usuallythe Euclideandistance)to the
destinationBy choosinganappropriatanultiplicative factor we canincreasdhe contritution of the
secondcomponentin calculatingthe label of a vertex. Froma intuitive standpointhis corresponds
to giving the destinationa high potential,in effect biasingthe searchtowardsthe destination.The
resultingpathsclearly neednot be optimal. By choosingthe appropriatebiasfactor one cantypi-
cally getfasteralgorithmsat the costof accurag. As our resultsin Section6 point out, it appears
thatanappropriateconstantesultsin avery goodtrade-of betweerjuality of solutionandthetime
required.

(2) Combining A* with Bidir ectional Search The discussiorin the above sectionssuggestsom-
bining the bidirectionalsearchheuristicwith the A* search.Onepossiblewayto do it is to usetwo
potentialsD,(u) and D;(u) for eachvertex, the potentialsreflectingthe lower bounds(usuallyge-
ometricdistancesdf u from s andt. A nawe of implementingthis ideais unfortunatelyincorrect,
sincethe two potentialsimply building shortestpathtreesfrom s and¢. As shawvn in [SI+97)], a
modifiedpotentialsuficesto ensurehecorrectnessf thealgorithm.

9 Discussionon Data Structures

(1) Arrays versusHeaps. In a naive implementatiorof the algorithmusingan array A, in which
for eachverte, v; we storethe valueof d(v;) in location.A(¢). In eachiterationExtract Minimum
Key takesO(n) time (findinga minimumvaluein anunsortedarraytakesO(n) time) andDecrease
Key takestime O(deg(v)). Heredeg(v) denoteshe degreeof v. Thetotal runningtime is therefore
> » O(n + deg(v)) = O(n? + m). Using Binary Heaps(ashasbeendonein the currentimple-
mentationof the algorithm),we canimprove therunningtime. First considerExtract MinimumKey
operation.Thetime to do thisis O(log n) sincewe simply pick thetop of the heapandthenprocess
the datastructureto maintainthe heapproperty(usingHEAPIFY). Next considerthe DecreaseKey
operation. This operationtakestime O(deg(v) log n) for the following reason.We needto update
the distanceestimatefor eachof the deg(v) neighbors.eachoperationtaking time O(logn). The

18



time to build the heapfor the first time is O(n). Thusthe total runningtime of the algorithmis
>, O((logn) + deg(v)logn)) = O(nlogn + mlogn) = O(n + m)logn. We alsoconsidered
usingFibonacciHeaps.Our experimentalanalysisrevealedthattypically the numberof nodesthat
arekeptin aheapis around500;thususinga moresophisticatedlatastructurewith higherconstants
washotlikely to yield betterresultsin practice.UsingFibonacciheapsouldpotentiallyimprove the
theoreticakunningtime of the algorithmby of log(#), whereH denoteghe maximumheapsizeat
ary stageof the execution. Thisimpliesanimprovementof at mosta factorof 9. But the constants
with the heapoperationsandthe complicateccodefor implementingthis datastructureweighmore
heavily againstt.

(2) Deferred Update. Recallthatwe needto updatethe valuesof the distanceestimatesn Step2b

of DIJKSTRA’S ALGORITHM. Assumethatthe heapis #, anddegreeof anodev beingd,, it would

take roughly2d, log H operationgo updatethe distanceestimatesThereasorfor this is asfollows:

We canmaintainanauxiliary arraythatkeepspointersto the nodesin the heap.Every time a nodes
distanceestimates updatedthe nodemovesthroughthe heap(asa partof HEAPIFY operation)}o

settlein the final position. During the courseof this othernodeson its pathalsochangepositions.
Thisimpliesthatthepointedvaluesfor eachof thenodeseedeupdated (Weareassumingnarray
implementatiorof theHeap.)Anotherpossiblewvayto dothisis to insertmultiple copiesof anodein

theheap.In thisway, thetime takenis roughlyproportionatto addingthesenodesplustheadditional
factordependingon the size of the heapfor future operations.Again, let d, denotethe degreeof

anodeandd,,q,; bethe maximumdegree. Thenthe heapsize grows at mostby a multiplicative

factorof d,,q;. SincetheHeapoperationgake time roughlylog #H thisimpliesthatthetotal time for

executingStep2b is no morethand gz 10g(dmazH) Whichis dpqz (log H + log dpmqz). Typically,

the averagedegreeof a nodein the Casestudynetwork is 2.8 ~ 3 andyou expectthatit only gets
insertedroughlyonly by half its neighborgresultingin anaverageincreaseof no morethan4 onthe
sizeof theheap.This impliesthatwe spendonly anadditionaladditve factorof 2d, for eachrun of

Step2b.

(3) Hash Tablesfor Storing Graphs. Thegraphor theinputwe recevedfrom DallasMPO consists
of long Link andNodeld’s. Althoughthe namingcorventionis usefulfor in othercontets, sucha
namingconventionyields a inefficient useof the domainspace.To illustratethe point, the link and
the nodelt’s given weretypically madeof 32 bits long. Thusthe namespaceof for the nodesis
roughly232. In contrasthe numberof nodess roughly 10* ~ 22, Sucha discrepang immediately
motivateda useof hashtablesto improve the namingspacautilization. We useda HashTableof size
roughly 2™ (i.e. addresss bits long). Oneimportantreasorfor doingthis is clearly the efficiency
gainedduringaccessinghelongnames.Theefficiengy is obtainedor two possiblereasonsThefirst
andmoreimportantreasoris thatthe arrayusedto storethe structure(information)associateavith
eachnodeis smallenoughto typically fit thefirst level cache In contrastrraysof size232 will never
afastcacheandthuswill imply a significantincreasean the processingime. It is well knowvn that
memoryaccesss significantbottleneckin thedesignof fastalgorithms.Anothersmallreasoris that
smallwordsmight be usefulin efficient accesof memorycontents.Also, notethatthe Hashtable
needdo beaccessednly duringinputandoutputof the plansandthusthe processs notexpensie.

(4) Smart Label ResetWe now discusgheimprovementperformedn the context of finding paths
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for anumberof travelers. Note thatin Stepl we needto setthe distanceestimatef all thenodes
to beinitialized to infinity. ThistakesO(n) time perrun of the algorithm. We insteadrelabelonly
thosenodesvhosdabelshave changediuringthecourseof thealgorithm. This simply consistof the
nodeghatwereatarytimeinsertedn theheap.Sinceon anaveragethetotal numberof nodesvisited
is a smallfraction of the total numberof nodes(in factis O(y/n) for bidirectionalimplementation)
thisyieldssignificantimprovementdn therunningtime of thealgorithm.

(5) Heaptricks At theinnermostioop of our heapimplementatioraretwo smalldetails: oneis the

teston a specialcaseat the end of the heap. This testcanbe replacedby settingunusedelements
of the arrayto the valueinfinity, by this replacingan operationin the loop by (possibly)onemore

iterationin theloop. Theotherpossibilityis to “streamline”thecomparisoratthisloopfrom possibly
four down to three.

(6) struct of arrays vs. array of structs Following objectorienteddesigngoalsoneendsup having

different,independenarraysfor storingdatafor the network, label-settingandthe shortest-path-tree
module. Consideringcachingbehaior of the processoit seemsadwantageouso combinetheseto
onebig arrayof structshaving entriesfor thedifferentmodules.
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